SUT BEZI SARATON KASALLIKLARINI SIMPTOMLARINI MASHINALI O‘QITISHGA TAYYORLASH BOSQICHLARI
Ключевые слова:
sut bezi saratoni, mashinali o‘qitish, simptomlar aniqlash, ma’lumotlarni tahlil qilish, diagnostika, tibbiy ma’lumotlarАннотация
Maqolada sut bezi saratoni kasalligiga chalingan bemorlarning kasallik varaqalari asosida kasalliklarni simtonlarni ifodalovchi mashinali o‘qitishga tayyorlash bosqichlari ishlab chiqilgan. Simptomlarni shakillantirishda mutaxassislar bilam hamkorlikda “umumiy sog‘liq va simptomlar haqida savollar”, “Oilaviy va individual tibbiy tarix”, “gormonlar va reproduktiv salomatlik”, “hayot tarzi va xavf omillari”, “psixologik va ijtimoiy omillar” ishlab chiqildi. Mashimnali o‘qitish uchun o‘quv tanlanmasi kasallik varaqasida matn ko‘rinishidagi ma’lumotlarni nominal ko‘rinishidagi jadval ishlab chiqildi. Ishlab chiqilgan nominal ko‘rinishdagi jadvalni mashinali o‘qitishga tayyorlash bosqichlari ishlab chiqildi.
Библиографические ссылки
Barzilay, R., et al. (2021). Artificial Intelligence in Breast Cancer Detection: Current Applications and Future Directions. Nature Reviews Clinical Oncology, 18(9), 493-507.
DOI: 10.1038/s41571-021-00512-z
Giger, M. L. (2020). Machine Learning in Medical Imaging: Breast Cancer Detection and Diagnosis. Annual Review of Biomedical Engineering, 22, 147-171.
DOI: 10.1146/annurev-bioeng-082619-021105
Lehman, C. D., et al. (2019). Mammographic Screening: The Role of Artificial Intelligence in Breast Cancer Early Detection. Radiology, 290(2), 491-499.
DOI: 10.1148/radiol.2019182906
Gilbert, F. J., et al. (2022). AI-Assisted Breast Cancer Diagnosis: Evaluation of Real-World Applications. The Lancet Digital Health, 4(3), 175-184.
DOI: 10.1016/S2589-7500(22)00018-1
Majumdar, S., et al. (2021). Deep Learning Models in Breast Cancer Imaging: Current Trends and Challenges. IEEE Transactions on Medical Imaging, 40(5), 1232-1241.
DOI: 10.1109/TMI.2021.3055537
Wolff, A. C., Hammond, M. E., et al. (2020). Clinical Guidelines for Breast Cancer Biomarkers: Implications for Personalized Treatment Strategies. Journal of Clinical Oncology, 38(12), 1414-1425.
DOI: 10.1200/JCO.19.02450
Karssemeijer, N., et al. (2021). Automated Breast Cancer Risk Assessment Using Machine Learning Techniques. European Radiology, 31(8), 6082-6091.
DOI: 10.1007/s00330-020-07636-7
Nguyen, D., et al. (2019). Multimodal Data Integration for Early Breast Cancer Detection Using AI Technologies. BMC Medical Imaging, 19(1), 45.
DOI: 10.1186/s12880-019-0347-2
Elmore, J. G., et al. (2020). Challenges in Interpreting Breast Cancer Imaging with Artificial Intelligence Assistance. JAMA, 323(9), 865-875.
DOI: 10.1001/jama.2020.0345
Yala, A., et al. (2022). Deep Learning Applications in Mammography for Predicting Breast Cancer Risk and Outcomes. npj Breast Cancer, 8(1), 15.
DOI: 10.1038/s41523-022-00333-2
Nishanov, A.H., Akbaraliev, B.B., Tajibaev, S.K. About One Feature Selection Algorithm in Pattern Recognition. Advances in Intelligent Systems and Computing, 2021, 1323 AISC, p.103–112.
Atoev, S., Nishanov, A., Abdirazakov, F. Object Tracking Method Based on Kalman Filter and Camshift Algorithm for UAV Applications. International Conference on Information Science and Communications Technologies: Applications, Trends and Opportunities, ICISCT 2021, 2021.
Nishanov, A.K., Allamov, O.T., Ruzibaev, O.B., Abdullaev, A.S., Allamova, S.T. An approach to finding the most optimal route in a dynamic graph. International Conference on Information Science and Communications Technologies: Applications, Trends and Opportunities, ICISCT 2021, 2021.
Nishanov, A., Akbaraliev, B., Beglerbekov, R., Tajibaev, S., Kholiknazarov, R. Analytical method for selection an informative set of features with limited resources in the pattern recognition problem. E3S Web of Conferences, 2021, 284, 04018.
Nishanov, A.H., Djuraev G.P., Khasanova, M.A., Saparov, S.X., Zaripov, F.M. Algorithm of diagnostics of medical datas based on symptom complexes. Proceedings Volume 12564, 2nd International Conference on Computer Applications for Management and Sustainable Development of Production and Industry (CMSD-II-2022); 125640W (2023) https://doi.org/10.1117/12.2669449.
Nishanov, A. K., Akbaraliev, B. B., & Djurayev, G. P. (2020, November). A symptom selection Algorithm based on classification errors. In 2020 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-4). IEEE.
Nishanov Akhram Khasanovich, Mamazhanov Rakhmatilla Yakubzhanovich, Khaidarov Sherali Islom o‘g‘li, Xolbekov Abdusattor Maxammatovich, & Karimova Zilola Botirovna. (2024). Diagnostic Algorithm for Early Detection of Breast Cancer Based on Error Minimization Approach. International Journal of Innovative Science and Research Technology (IJISRT), 9(12), 1535–1542. https://doi.org/10.5281/zenodo.14565219
Nishanov, A. K., Djuraev, G. P., & Khasanova, M. A. (2020). Classification and feature selection in medical data preprocessing. Compusoft, 9(6), 3725-3732.
Nishanov, A. K., Ruzibaev, O. B., Chedjou, J. C., Kyamakya, K., Abhiram, K., De Silva, P., ... & Khasanova, M. A. (2020). Algorithm for the selection of informative symptoms in the classification of medical data. In Developments of Artificial Intelligence Technologies in Computation and Robotics: Proceedings of the 14th International FLINS Conference (FLINS 2020) (pp. 647-658).
Nishanov, A. H., Akbaraliev, B. B., & Tajibaev, S. K. (2020, October). About one feature selection algorithm in pattern recognition. In World Conference Intelligent System for Industrial Automation (pp. 103-112). Cham: Springer International Publishing.
Nishanov, A. K., Turakulov, K. A., & Turakhanov, K. V. (1999). A decision rule for identification of eye pathologies. Biomedical Engineering, 33, 178-179.
Nishanov, А. H., & Samandarov, B. S. (2015). Assessment model of monitoring and defining the completeness of course elements of information systems. Europaische Fachhochschule, (5), 56-58.
Nishanov, A. K., Allamov, O. T., Ruzibaev, O. B., Abdullaev, A. S., & Allamova, S. T. (2021, November). An approach to finding the most optimal route in a dynamic graph. In 2021 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 01-05). IEEE.
Atoev, S., Nishanov, A., & Abdirazakov, F. (2021, November). Object Tracking Method Based on Kalman Filter and Camshift Algorithm for UAV Applications. In 2021 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-4). IEEE.
Rakhmanov, A. T., Nishanov, A. K., Ruzibaev, O. B., & Shaazizova, M. E. (2020, November). On one method for solving the multi-class classification problem. In 2020 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-4). IEEE.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2024 Nishanov Akhram Khasanovich, Mamajanov Raxmatilla Yakubjanovich, Xaydarov Sherali Islom o‘g‘li, Mengturayev Farxod Ziyatovich, Yuldashev Rustam Raxmonovich
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.